Unsupervised Neural Machine Translation
نویسندگان
چکیده
In spite of the recent success of neural machine translation (NMT) in standard benchmarks, the lack of large parallel corpora poses a major practical problem for many language pairs. There have been several proposals to alleviate this issue with, for instance, triangulation and semi-supervised learning techniques, but they still require a strong cross-lingual signal. In this work, we completely remove the need of parallel data and propose a novel method to train an NMT system in a completely unsupervised manner, relying on nothing but monolingual corpora. Our model builds upon the recent work on unsupervised embedding mappings, and consists of a slightly modified attentional encoder-decoder model that can be trained on monolingual corpora alone using a combination of denoising and backtranslation. Despite the simplicity of the approach, our system obtains 15.56 and 10.21 BLEU points in WMT 2014 French → English and German → English translation. The model can also profit from small parallel corpora, and attains 21.81 and 15.24 points when combined with 100,000 parallel sentences, respectively. Our approach is a breakthrough in unsupervised NMT, and opens exciting opportunities for future research.
منابع مشابه
A Comparative Study of English-Persian Translation of Neural Google Translation
Many studies abroad have focused on neural machine translation and almost all concluded that this method was much closer to humanistic translation than machine translation. Therefore, this paper aimed at investigating whether neural machine translation was more acceptable in English-Persian translation in comparison with machine translation. Hence, two types of text were chosen to be translated...
متن کاملCASICT-DCU Neural Machine Translation Systems for WMT17
We participated in the WMT 2016 shared news translation task on English ↔ Chinese language pair. Our systems are based on the encoder-decoder neural machine translation model with the attention mechanism. We employ the Gated Recurrent Unit (GRU) with the linear associative connection to build deep encoder and address the unknown words with the dictionary replace approach. The dictionaries are e...
متن کاملA Framework for Translating SMS Messages
Short Messaging Service (SMS) has become a popular form of communication. While it is predominantly used for monolingual communication, it can be extremely useful for facilitating cross-lingual communication through statistical machine translation. In this work we present an application of statistical machine translation to SMS messages. We decouple the SMS translation task into normalization f...
متن کاملBilingually-Constrained Recursive Neural Networks with Syntactic Constraints for Hierarchical Translation Model
Hierarchical phrase-based translation models have advanced statistical machine translation (SMT). Because such models can improve leveraging of syntactic information, two types of methods (leveraging source parsing and leveraging shallow parsing) are applied to introduce syntactic constraints into translation models. In this paper, we propose a bilingually-constrained recursive neural network (...
متن کاملMultilingual Word Embeddings using Multigraphs
We present a family of neural-network– inspired models for computing continuous word representations, specifically designed to exploit both monolingual and multilingual text. This framework allows us to perform unsupervised training of embeddings that exhibit higher accuracy on syntactic and semantic compositionality, as well as multilingual semantic similarity, compared to previous models trai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1710.11041 شماره
صفحات -
تاریخ انتشار 2017